=
¢
k

¢
t

|

4

"
]

i
i_
|
i
i

ESD-TDR-65-424

L0 Aalnas N LIST

tofl Call Ha. 4 ﬁlﬁ ! [
v . . ;'* L SN R A :-,-\. ‘_-—-,'9\.—,; c AL
I A S i 1 4 oy No. L ot Lo
RO BN
Stlaviiond &’ o CTED DIViSION
(S, BELmm o1l

Technical Note 1965-39

A. A. Mathiasen
J. D. Drinan

Editors

Haystack Pointing System:
Intercom

9 September 1965

Prepared under Electranic Systems Division Contract AF 19(628)-5167 by

Lincoln Laboratory @'

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

The work reported in this document was performed at Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology, with the support of the U.S, Air Force
under Contract AF 19(628)-5167.

48

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

HAYSTACK POINTING SYSTEM: INTERCOM

A. A. MATHIASEN
J. D. DRINAN

EDITORS

Group 62

TECHNICAL NOTE 1965-39

9 SEPTEMBER 1965

LEXINGTON MASSACHUSETTS

= B

-

ABSTRACT

The Intercom program in the Haystack pointing system provides communica -
tions between the pointing system and an experimenter at Haystack using the console
keyboard-typewriter. A user at the Millstone or the West Ford site may also
direct the pointing system via a teletypewriter. The structure of the program, the

calling sequence for it, and the conventions affecting the operator are described.

Accepted for the Air Force
Stanley J. Wisniewski

Lt Colonel, USAF

Chief, Lincoln Laboratory Office

iii

PREFACE

This document was written by C. W, Adams Associates,
575 Technology Square, Cambridge, Massachusetts, under
subcontract to Group 62 of Lincoln Laboratory, as part of

a programming effort on the Haystack Pointing System.

iv

CONTENTS

I. Introduction

IT. Program Specifications

Calling Sequence

Communication with West Ford Teletypewriter
Control Characters

Operational Conventions

High-Speed Printer Output

Error Conditions

Specification Tables

Output Specification Entry

Input Specification Entry

Examples

III. Subroutine Descriptions

INTERCOM
COMPROC
INTOUT

INTIN

TTYININT
WESTOUT
INFORMINT
PUTFORMINT
PUTPREP
INPUTLA , INPUTNA , INPUTMA
INPUTA

DECIN, HOCTIN
NUMIN

SPECIN

YESIN

FLOATIN, FIXIN
FXPREPREN
BINDECINT
INTOCTBIN
INTBCDBIN
FRABCDBIN
BINDECFRA
SUPZRO

COFRND

COFFIX

CINFIX

COTELT

CINFLT

=

O~NOOOOUV D WWNONRN

12

14
16
18
20
22
24
26
28
30
32
3y
36
38
40
42
ity
45
47
49
51
53
55
57
59
61
63
65

I. INTRODUCTION

INTERCOM is an independent closed subroutine used in
the Haystack Pointing System to provide communication between
the operator of the system and the various programs which
point the antenna. The routine also has the facility for
allowing the operator of the West Ford antenna system to com-
municate with Univac U490 programs operating on that device.
Programs which use INTERCOM specify the format for input
and/or output by format specification tables referred to in
the calling sequence. The basic input-output device used by
INTERCOM is the console typewriter-printer provided with the
Univac 490. However, when operating with the West Ford sys-
tem, a standard teletypewriter (Model 28) is used instead for
input-output.

All messages, both input and output, may be fully logged
on the high-speed printer, using the Haystack system sub-
program PRLOG, as well as on the console typewriter-printer.
Thus, if the nperator chooses to terminate printing on the
console device, he will still have a complete record of all
messages prepared by INTERCOM,

II. PROGRAM SPECIFICATIONS

Calling Sequence

From User Program:

RJP U (INTERCOM)
U-TAG XXXXX,YYYYY
Normal return

XXXXX = location of output specification table; and
YYYYY = location of input specification table. If
XXXXX = 0, no output activity will take place; if
YYYYY = 0, no input will be expected; if both XXXXX

and YYYYY = 0, control will be returned to the normal
return after cycling once through the system. When-
ever control is returned to the normal return, all
input-output activity is completed.

From Master Control Program (MCP):
RJP L (INTERCOM)

Attention return
Normal return

Communication with West Ford Teletypewriter

To indicate that the West Ford teletypewriter is to be
used as the basic communication device with the Haystack
console serving only as monitor, the Univac 490 operator
must set Jump Key 3 on the computer control board. When
INTERCOM finds this, it sets up for conversion of all in-
formation to or from teletype code and operates through an
additional input-output channel. The 490 console is dis-
abled for input but prints everything that is printed on
the West Ford teletypewriter, both input and output. All
special control keys perform the same functions on the West
Ford and the Haystack keyboards.

Control Characters

Haystack West Ford Meaning

C/R C/R (carriage Temminates input, causes
return) INTERCOM to evaluate in-
put string for format
validity, limits not ex-
ceeded, etc. If input is
acceptable, causes * to be
printed. If no input ex-
pected, terminates output.

? ? Deletes current input and
allows operator to start
over, Causes the message
NOT ACCEPTED to be printed.

E] (SPEC) # Forces limit check, i.e.,
if limit had been ex-
ceeded, this key will
cause the input value to
be accepted regardless of
limit. Causes the message
ACCEPTED to be printed.

Eﬂ (or 1) (bell) Attention symbol; causes

transfer of control to
attention return in MCP.

Operational Conventions

Any output information may be cut off at any time by
hitting either a control character key or a data character
key (except when parallel output on the high speed printer is
unavailable if it was desired). A carriage return with indenta-
tion, or a line feed, depending on the action called for in the
input specification table, will be issued followed by that
character (or the appropriate message, if one of the control
characters was hit). If input is expected, that character
will be treated as the first character of the input string. If
no input is expected, the character is ignored.

After a limit has been exceeded, a carriage return will
cause no operation. The operator must hit either a question

mark to delete the entry or the SPEC key to force the answer
in spite of the 1limit, or he may begin immediately to type
the new answer which will automatically delete the previous
entry. Once this has been done the carriage return key will
again perform its normal function.

Up to 300 characters may be output in any one output
message. Since the teleprinter page is only 72 character
positions wide, however, the user must make provision for
issuing his own carriage return and line feed.

The space character is printed but not recognized for
nunerical input. It is accepted, though, for alphanumeric
character string input. .

Carriage positioning conventions are designed so that
it is always possible to distinquish information typed by
the computer (output) from that typed by the operator (input).
Output information always begins at the left margin of the
log paper. It may extend over several lines, but each line
should begin at the left margin (unless spaces are deliber-
ately programmed into the output message, which is not rec-
ommended) . Input information will always be started on the
next line below the last line of output. The input message
would begin either indented five spaces from the left margin
or directly below the first space after the output message,
depending on an indicator bit in the input specification
table.

High-Speed Printer Output

If Jump Key 1 is not set on the computer control board,
there is activated a series of routines that cause all mes-
sages, both input and output, to be printed in their entirety
on the high-speed printer. (Note that the normal condition
is for printer output; setting Jump Key 1 inhibits printer
output.) This provides a complete log of operator activity
since, even if the operator terminates an output message
before completion on the console printer by commencing the
input response, the entire message will be printed on the
high-speed (line) printer. Indentation is identical to what
would appear on the console printer, but vertical spacing
is compressed to single spacing between lines.

An additional option is provided for using the various
output formatting and conversion routines in INTERCOM as a
means for conveniently printing internally-stored informa-
tion on the line printer without printing on the console
printer. This requires a call to INTERCOM with no input
indicated and a special bit setting in the output specifica-
tion table. This is further described in the section ex-
plaining the output specification entry.

Error Conditions

FORMAT ERROR - This message is typed by INTERCOM after
the operator has completed typing the input message and hit
carriage return if his input violated one of the require-
ments of the input specification. For example, if numeric
input was specified and the operator typed an alphabetic
character, or if an octal number was specified and the op-
erator typed an 8 or 9, etc. After typing the error mes-
sage, INTERCOM will give a carriage return, enough spaces
to line up the new answer with the erroneous one, and re-
type as much of the input as correctly met the specifica-
tions. The operator may proceed to finish the input message
correctly, again terminating with the carriage return. This
process will be repeated as long as incorrect input is typed.
An incorrect input may not be forced to be accepted but the
entire input string may be deleted by typing a question mark.

PROGRAM ERROR - This message is typed by INTERCOM if an
output message cannot be properly converted to the format
specified by the output specification table, or if either of
the specification tables is improperly coded. In short, it
implies that the program which called INTERCOM is in error
and there is nothing the operator can do to cause or cor-
rect this condition. INTERCOM will return control to the
normal return of the MCP and the program which caused the
error will not be resumed.

MAX LIMIT, MIN LIMIT - These messages are typed by IN-
TERCOM if the upper or lower limit given in the input speci-
fication table is exceeded. The message will occur after
the operator hits the carriage return terminating the input
string. The operator then has the three options described
above under Operational Conventions, namely, to start a new
input string directly, to force the entry past the limit
check, or to delete the previous entry. It is important

to note that once this error message has been typed, the lo-
cation specified to receive the input entry has had that
entry stored in it; therefore it is not possible to delete
the entry, then hit carriage return and assume that the re-
ceiving location has the same contents as before the call to
INTERCOM.

Specification Tables

Two distinct types of specification tables may be ref-
erenced by INTERCOM, each with its own rules for proper
preparation. The output specification table consists of one
or more separate output specification entries. If there are
more than one, the routine will link together the output
messages indicated and type each in its own format with a
single call to INTERCOM. Inputs may not be linked in this
manner; thus the input specification table will always con-
sist of only one entry.

Qutput Specification Entry

The first word of the output specification will contain
the format description of what is to be printed. The second
word will contain, in the lower half, the location of the in-
formation to be output. The upper half of the word will con-
tain:

All ones (77777), meaning there is nothing more to be
printed.

All zeros (00000), meaning the following location con-
tains the first word of the next output specification
entry to be processed.

The location of the next output specification to be
processed (must not be location 00000, 00001, 77776, or
77777) .

If line printer output only is desired, this half-word
in the first output specification entry of the table
should contain either a -1 (77776) if there is nothing
more to be printed, or a +1 (00001) if the following
location contains the first word of another entry.

There is no provision for indicating printer-only op-
eration in an entry which points to the location of
the next entry.

The following format descriptions are acceptable for
output specification entries:

F8

XBBy

means that a 60-bit floating-point value is to
be printed in exponential form with B digits to
the right and one digit to the left of the deci-
mal point; for example, a format description of
F6 would result in a printout of the form:
1,23u567E-2.

means that a 30-bit value is to be printed out
as a fixed-point decimal number whose radix
point is to the right of bit y (the 30 bits
being counted 0 to 29 from right to left), B
numerals (8=1 to 9) expressing the fraction and
as many digits as required for the integer por-
tion. (y=0 implies an integer.) The integer
portion is followed by a decimal point whether
or not a fractional portion follows.

means that a 30-bit value is to be printed as a
signed decimal integer with leading zeros sup-
pressed.

means that a 30-bit value is to be printed out
as a 10-digit octal integer.

means that the second entry will contain the lo-
cation of one or more words containing a string
of six-bit (Fieldata) alphanumeric characters
which will be terminated by a word of all ones.

Input Specification Entry

The first word of the input specification table will
contain the format description. The second word will con-
tain, in the lower half, the location into which the input
information is to be placed (converted into internal com-

puter form).

If this information requires more than one

word (double-length floating-point numbers or an alpha string
of characters), this location is the first location of the
information to be stored.

The upper half of the second word will contain two indi-
cator bits to specify carriage positioning prior to input and
whether or not limit checking is desired.

To specify a carriage return, line feed and usual iden-
tation, the upper half of the second word is coded as a one
(00001). A line-feed-only specification is coded as zero.
The input information would then begin immediately following
the output, but on the next line,

To specify limit checking the upper half of the second
word is coded as 10. No limit checking is coded as 00. Thus,
to specify both carriage return and limit check the upper
half would be coded as 11, If limit checking is indicated,
there will be a third entry containing the lower limit and a
fourth entry for the upper limit. If the converted number is
double-length, the third and fourth entries will similarly be
double-length.

The following format descriptions are acceptable for the
input specification table:

E means that the input number is to be converted to
a 60-bit internal format floating-point number.
The forms of a number which may be input are:

57
5.7E+1
547 EL
57.0
57.
S57E2
570E-1

Xy means that a number is to be converted to a 30-bit
fixed-point binary numnber with the radix point to
the right of bit y. The input format of the num-
ber is the same as for floating-point numbers.

D means that a signed decimal integer is to be con-
verted to a 30-bit binary number. (Omission of
sign implies positive.)

0 means that a signed octal integer is to converted
to a 30-bit binary number. (Omission of sign im-
plies positive.)

b means that a YES or NO is to be typed next. If
a YES is typed, a one will be placed in the loca-
tion specified in the second entry; 4if a NO, a
zero will be placed there.

La means that from 1 to a alphabetic letters (A to Z)
are to be typed.

N means that from 1 to a numerals are to be typed.

M means that from 1 to a characters of any mixture

are to be typed.

wé means that the character to be typed must be ¢
where ¢ is some specific character.

o may not exceed 300, (the size of the character buffer
used for both input and output.)

Examples

To output a string of characters, such as a statement
requiring no reply, an entry would be made to INTERCOM from
the calling program by:

RJP U (INTERCOM)
U-TAG OUTSPEC,0

where OUTSPEC is the location of the output specification
table.
The output specification table would be written in

SPURT, as follows:

OUTSPEC FD O A
77777 MESSAGELOC

MESSAGELOC FD 3 FIRST NUMBER
77777 77777

To input only a number to be converted to floating-
point and to store that number in XX, the calling sequence
would be:

RJP U (INTERCOM)

0 INSPEC
INSPEC FD 0 F

0 XX

To both output the statement above and input the previ-
ously specified number, the following entry could be made:

RJP U (INTERCOM)
U-TAG OUTSPEC, INSPEC

The output and input specification tables as written
above would be used.

To link together several output messages with different
formats and require another format for input, the coding be-
low might be used. (This particular sequence of code would
serve as an octal-to-decimal converter which would print the
decimal equivalent of the previous input number and then
await new input.)

RJP U (INTERCOM) CALL INTERCOM

U-TAG SPECTBLOUT ,SPECTBLIN

JP $-2 RETURN TO TYPEOUT LAST

COMMENT INPUT AND AWAIT NEXT
SPECTBLOUT FD 1 A ALPHA OUTPUT

00000 DECMESSAGE POINT TO MESSAGE

FD 1 D DECIMAL OUTPUT

NEXTSPEC NUMBERLOC POINT TO NUMBER
NEXTSPEC FD 1 A ALPHA OUTPUT

77777 HOCTMSG POINT TO MESSAGE
DECMESSAGE FD U4 DECIMAL EQUIVALENT =

77777 77777 TERMINATE ALPHA STRING
HOCTMSG FD 3 OCTAL NUMBER =

77777 77777 TERMINATE ALPHA STRING

10

NUMBERLOC 00000 ooiuy

SPECTBLIN FD 1 0 OCTAL INPUT
10 NUMBERLOC LINE FEED AND LIMIT CHECK
00000 00000 LOWER LIMIT = 0
00000 01'000 UPPER LIMIT = 1000

This coding could produce the following log on the con-
sole printer:

(a) DECIMAL EQUIVALENT = 100 OCTAL NUMBER

®) 678 FORMAT ERROR

(c) 67%

(d) DECIMAL EQUIVALENT = 55 OCTAL NUMBER =

(e) 2233 MAX LIMIT=0000001000

() 7654 MAX L

(2) ACCEPTED

(h) DECIMAL EQUIVALENT = 4012 OCTAL NUMBER =

Notes:

Line (b) - Digit 8 is not an octal digit, hence caused format
error.

Line (e) - Number typed was larger than 1000, hence caused
limit check error.

Line (f) - Number typed was larger than 1000, hence caused
limit check error. Operator did not wait for entire
error message to print, but hit SPEC key to force
typein in spite of exceeding limit.

Line (g) - Message typed as result of hitting SPEC key.

11

III. SUBROUTINE DESCRIPTIONS

INTERCOM

Function

To print a message on the console printer (and/or the
line printer) consisting of alphabetic information, fixed-
point, floating-point, octal integer or decimal integer con-
verted from internal computer representation, and to accept
similar types of input from the console typewriter or a re-
mote teletypewriter.

Calling Sequence

RJP U(INTERCOM)
U-TAG XOXX,YYYYY
Normal return

COOXKX
YYYYY

location of output specification table)
location of input specification table)

Input

Output and input specification tables (see Section II).

Output

Printed output on console printer, line printer, or
remote teleprinter.

Converted values of input information stored in location
given by input specification table.

Subroutines Used

PUTFORMINT, COMPROC, WESTOUT, WESTIN, HSPOUT.

12

Storage Areas Read

None.

Storage Areas Written

INTOUTSWO, CASESET, INTOUTSW, ACTIVITY
SPECTBLS, PRINTSW, BUFFCOUNT, BUFFER
KILLOUTSW, BUFSLOT

Method

INTERCOM interprets calling sequence and, through use
of PUTFORMINT, prepares the output message string., It ini-
tiates the output buffer, calls WESTOUT if Jump Key 3 is set
indicating that the West Ford console should also receive
the output message, and calls HSPOUT if line printer output
is also indicated (Jump Key 1 not set). If no output is
indicated, INTERCOM sets the output completion bit in the
ACTIVITY word and bypasses initiating any output buffer,
Once all appropriate outputs are initiated, INTERCOM exits
to an address set up by COMPROC, which must be called first
for initialization. This address is normally in the MCP of
the pointing system and control remains with the MCP until
output is complete or terminated by the operator and the in-
put, if indicated, is correctly accepted, converted, limit
checked and stored in the user's area as performed by COMPROC.
COMPROC then jumps back to the exit portion of INTERCOM, re-
turning to the user program via the normal return., If nei-
ther input nor output is indicated, INTERCOM merely cycles
once through the MCP and COMPROC, then returns to the user
program without any teletypewriter action,

Error Conditions

For operator error conditions, see Error Conditions in
Section II. Program error conditions cause a jump to the
routine called ERROR with a 0 in the A register indicating
an invalid call to INTERCOM. The message "PROGRAM ERROR
XOXX™ is printed where XXXXX is the location of the call to
INTERCOM.

13

COMPROC

Function

To initialize the interrupt answering routines, test
for output or input completed, interpret, check, convert
and store the input and return control to the user program
when input is correct.

Calling Sequence

RJP L (INTERCOM)
Attention return
Normal return

Input

ACTIVITY - a status register set by the interrupt
answering routines,

BUFFER - an area containing the string of input
characters.

Output

INTERCOM program messages indicating error conditions
or valid input.

Subroutines Used

INFORMINT, WESTOUT, WESTIN, HSPACC, HSPGIN,
HSPATIN, HSPNOTACC, SPACERITE, ERROR

Storage Areas Read

ACTIVITY, SPECTBLS, BUFSLOT, BUFFCOUNT

14

Storage Areas Written

SLOTSTOR, ACTIVITY, LOCININT (42), LOCOUTINT (62),
LOCTTYIN (40), LOCTTYOUT (60), BUFSLOT
BUFFER

(Locations 40, 60, 42, and 62 are the hardware inter-
rupt locations for input and output on channels 0 and 2,
respectively.)

Method

COMPROC is called by MCP to respond to an operator's
use of the control characters. It examines the ACTIVITY
word to decide whether to exit immediately back to the MCP,
process completed input data, exit to the attention return,
delete input up to this point, etc. When all input is
correct, COMPROC will jump back to the exit portion of
INTERCOM, returning control to the user program.

Error Conditions
An error of any type causes a jump to the routine called

ERROR with a code in the A register. The codes are interpreted
as follows:

0 - program error; invalid call to INTERCOM

20 -~ maximum limit exceeded

21 - minimum limit exceeded
other ~ format error; input cannot be correctly

interpreted

15

INTOUT

Function

To answer output interrupts serving two types of output:
1) the output message strings prepared by INTERCOM or COMPROC;
and 2) the single characters echoed back to the console print-
er by INTIN, the input interrupt answering routine. Routine
serves both console printer and remote teletypewriter.

Calling Sequence

From location 62 (the Internal Output Interrupt location
for channel 2) or location 60 (the location for channel 0) the
instruction

RJP INTOUT

is executed by the hardware when an output buffer on channel

2 or channel 0 is exhausted. The return from INTOUT releases
the interlock set by the hardware interrupt and returns con-
trol to the user's program at the point at which the interrupt
occurred.

Input

None.,

Output
ACTIVITY - not changed if only single character input is

being returned to printer; set to 4 if output message string
is complete.

Subroutines Used

WESTOUT, WESTIN

16

Storage Areas Read

SPECTBLS

Storage Areas Written

ACTIVITY

Method

A switch setting INTOUTSWO determines which of the two
types of output is being processed. If single character echo-
ing is being performed, the routine immediately sets up an-
other input buffer and exits. If message strings are being
processed, the specification table is examined to see if car-
riage return and indentation is requested or only line feed
and the appropriate spacing output characters are given (with-
out further interrupt required). Then the ACTIVITY word is
set to 4, an input buffer initiated and the routine releases
interlock and exits.

Error Conditions

None.

17

INTIN

Function

To answer input interrupts for the console typewriter.
Can terminate output and examine the input character to see
if it is a control character. 1If a control character, it
processes it accordingly setting the appropriate bit in the
ACTIVITY word; if not, it stores the input character in the
next available slot in the buffer and initiates an output
buffer to echo the character back to the printer.

Calling Sequence

From location 42 (the Internal Input Interrupt location
for channel 2) the instruction

RJP INTIN

is executed by the hardware when the single word (character)
input buffer connected to channel 2 becaomes filled. The
return from INTIN releases the interlock set by the hardware
interrupt and returns control to the point at which the inter-
rupt occurred.

Input
BUFIN - the single character buffer

Output

ACTIVITY - 10 if input complete (carriage return)
4 if output terminated
2 if deletion (question mark)
1 if attention (attention symbol)

Subroutines Used

WESTOUT, WESTIN, ERROR

18

Storage Areas Read

BUFIN, SPECTBLS, BUFSLOT, BUEFER

Storage Areas Written

ACTIVITY, BUFSLOT

Method

If output is in progress when INTIN is called, that out-
put is terminated and either a carriage return, line feed
and indentation is given or only a line feed depending on the
input specification table. Then the input character is ex-
amined. If it is one of the control characters, the appro-
priate bit is set in the ACTIVITY word and the routine exits
after re-initiating the input buffer. If not a control char-
acter, it is stored in the next slot in the BUFFER, BUFSLOT
is incremented, and the character is output back to the con-
sole printer and to the remote teletypewriter if West Ford
communication is indicated.

Error Conditions

If BUFSLOT, when incremented, exceeds the limit on the
BUFFER size, currently set to 30Q,, the effect is as if a
carriage return had been issued. Presumably, a format error
will be detected by COMPROC since no input specification allows
for more than 300 characters.

L)

TTYININT

Function

To answer input interrupts for the remote teletypewriter
(at West Ford). The routine interprets the character, echoes
it, sets a case switch if the character is a shift, otherwise
translates the character to Fieldata code and passes it on to
INTIN for normal input character processing.

Calling Sequence

From location 40 (the Internal Input Interrupt location
for channel 0) the instruction

RJP TTYININT

is executed by the hardware when a single word (character)
input buffer connected to channel 0 becomes filled. The
return from TTYININT releases the interlock set by the hard-
ware interrupt and returns control to the point at which the
interrupt occurred.

Input
TTYINWD - the single character buffer,

Output
See output of INTIN,

Subroutines Used

INTIN

Storage Areas Read

TTYINWD, TTYTBL

20

Storage Areas Written

BUF INWD

Method

The teletype to Fieldata translation table has letter
shift characters in the lower portion of the table and fig-
ure shift characters in the higher portion. The base ad-
dress of the table is set to one or the other of these por-
tions by the corresponding shift character after which the
Fieldata character corresponding to any teletype character
may be accessed directly. This character is placed in
BUFINWD, simulating the hardware function of filling the
buffer and allowing INTIN to process the character exactly
as though it came from the console typewriter,

Error Conditions

None.

21

WESTOUT

Function

The West Ford teletypewriter output routine tests Jump
Key 3 to sec if communication is desired with the West Ford
device, If so, it translates the output message string pre-
pared by INTERCOM or COMPROC from Fieldata to teletype code,
inserting shift characters as necessary and initiates an out-
put buffer to West Ford, with or without monitor as the in-
struction preceding the call indicates.

Calling Sequence

IN KEYIN, W(BUFINWD), MONITOR (Optional)

OUT KEYOUT, W(ANYTHING) , MONITOR (MONITOR optional)
RJP WESTOUT

Normal return

Input

Output buffer of Fieldata characters indicated by OUT
instruction preceding call.

Qutput

Printed output on remote teletypewriter.

Subroutines Used

None .

Storage Areas Read

TTYTBL.

22

Storage Areas Written

FDBUFCNT, TTYBUF.

Method

The two instructions preceding the call to WESTOUT are
interpreted as follows: 4if the instruction preceding the call
is an OUT with MONITOR, the OUT instruction on channel 0 will
likewise be with MONITOR, otherwise the OUT will be without
MONITOR. The buffer word indicated by that instruction will
be used to show the location and size of the Fieldata buffer
to be translated. The instruction preceding that (two prior
to the RJP) is examined to see if it is an IN; if so, a cor-
responding IN is initiated on channel O.

Error Conditions

None.

23

INFORMINT

Function

To interpret the input specification table, test the
completed input message for proper format, convert to in-
ternal computer word representation, store in the user's area,
and check for the value within the limits given.

Calling Sequence

RJP INFORMINT

0 location of input spec table
Error return

Normal return

Input

BUFFER - the string of characters containing the input
message.

The input specification table indicated.

Output

The converted value of the input message stored in the
user's area.

Subroutines Used

GREEKCONV

The following routines are called corresponding to the
format character given in the input specification table:

Format Character TEST STORE LMTCHK
F FLOATIN FLTSRT SLTLMT
X FIXIN NUMSTR FIXLMT
D DECIN NUMSTR DECLMT
0 HOCTIN NUMSTR HOCTLMT

24

Format Character TEST STORE LMTCHK

B YESIN NUMSTR NOLMT
L INPUTLA STRING NOLMT
N INPUTNA STRING NOLMT
[INPUTMA STRING NOLMT
w SPECIN NUMSTR NOLMT

Storage Areas Read

INCODTBL, INTEGER.

Storage Areas Written

BUFSLOT.

Method

The routine examines the input specification table to
see if characters other than the format character are re-
quired to specify gamma (the binary point of a fixed-point
number) , the number of characters to be input, or the speci-
fic character to be typed. If so, these numbers are con-
verted with GREEKCONV and passed on (by being left in the A-
register) to the appropriate TEST routine. The appropriate
STORE routine stores the converted values in the location (s)
indicated in the specification table, after which, if limit
checking is indicated, they are tested by the corresponding
LMICHK routine to see if they are within the given limits.

Error Conditions

1) Errors may be passed on from the TEST routine and
the LMTCHK routine. The contents of the A-register are un-
changed so that the individual routines determine the type
error.

2) An error return from GREEKCONV causes a 0 (program
error) to be placed in the A-register before returning to the
error return.

3) If a format character other than those allowed is
specified, a program error is indicated.

25

PUTFORMINT

Function

To interpret the Output Specification Table, linking
individual entries and causing the internal representations
to be converted to the appropriate output form and placed
in the output buffer, one character per word.

Calling Sequence

RJP PUTFORMINT

0 location of output spec table
Error return

Normal return

Input

The output specification table indicated.

Output

BUFFER - the string of characters comprising the output
message.

Subroutines Used

GREEKCONV, PUTPREP,

Storage Areas Read

PUTCODTBL, CHARO, INTEGER.

Storage Areas Written

None (BUFFER through use of PUTPREP),

26

Method

A loop is established for processing each specification
entry. Within that loop the format character determines
whether there are additional characters in the word for
specifying beta (the number of fractional digits to print)
or gamma (the binary point of a fixed-point number). If so,
they are converted from Fieldata to decimal and given to the
calling sequence of PUTPREP, The PUTPREP routine actually
calls the conversion routines and unpacks the output charac-
ters for storing in the buffer. PUTFORMINT then tests for
more entries in the specification table and either repeats
the loop or exits accordingly.

Error Conditions

Any error condition, whether generated by subroutines
or by PUTFORMINT coding, causes an exit to the error return
with a O (program error) in the A-register.

27

PUTPREP

Function

To call the appropriate output conversion routine,
unpack the resultant characters and store them with sign,
decimal point, etc., in the output buffer.

Calling Seguence

RJP PUTPREP
U-TAG XXXXX, YYYYY
Error return

Normal return

where XXXXX = location of information to be converted and
YYYYY = code, gamma, beta as follows:
000 CCC GGG GGB BBB
R B N . P4
code gamma beta
Input

Information in calling sequence,

Output

BUFFER - the string of characters containing the
output message.

BUFFCOUNT - a count of the number of characters
in BUFFER.

Subroutines Used

COTFLT, COFFIX, BINDECINT, BINOCTFLD, ZROSUPINT,
BUFESTORE,

28

Storage Areas Read

SIGN, IOINTEGER, IOFRACTION, BETA, EXPSIGN, IOEXPONENT
INTEGER.

Storage Areas Written

CODE, GAMMA, BETA, BUFFER, BUFFCOUNT

Method

Completely separate paths are followed for each of the
five possible output format characters (codes). Straight
Fieldata output is converted within PUTPREP; all other con-
versions are done with subroutines,

Error Conditions

Any error condition causes an exit to the error return
with a code in the A-register as follows:

11 - output message exceeds size of buffer

25 - Format Character not valid
other - as returned from conversion routine

29

INPUTLA ,INPUTNA , INPUTMA

Function

To test the input string of characters for proper class:
alphabetic, numeric or mixed, respectively.

Calling Sequence

RJP INPUTXA

Error return

Normal return

with the maximum number of characters to be
tested in the A-register

Input

None.

Output

The appropriate return.

Subroutines Used

INPUTA.

Storage Areas Read

None.

Storage Areas Written

None,

30

Method

An index register is loaded with the address of a word
containing the upper and lower limits of the character codes
within the class indicated by the particular routine. This
word is given to INPUTA to test the input string in general.

Error Conditions

If the string contains a character not between 05 and
37 for INPUTLA or between 57 and 71 for INPUTNA, the appro-
priate error return is given,

31

INPUTA

function

To test a string of input characters falling within a
pair of Fieldata codes given by the calling routines.

Calling Sequence

ENT B6 ADDRESS
RJP INPUTA
Error return
Normal return
ADDRESS XX YY

where XX is the upper limit and YY the lower limit of
the class of characters being tested.

Input
BUFFER+ (BUFSLOT) .

The A-register containing the maximum number of characters
to be tested.

Output
A setting of B6, BUFSLOT,

Subroutines Used

None,

Storage Areas Read

BUFFER, BUFSLOT

32

Storage Areas Written

BUFSLOT.

Method

The input buffer beginning at BUFFER + (BUFSLOT) is
tested character by character for a space which is ignored,
a carriage return which is cleared in the buffer and trig-
gers the normal return, or a character within the limits
specified. Any character other than these causes an error
return.

Error Conditions

1. A 10 in the A-register indicates too many characters
in the string prior to the carriage return. B6 contains a
one.

2. If a character is not within the specified class,
the error return is given with a zero in B6.

33

DECIN, HOCTIN

Function

To test the input string for proper decimal or octal
format and convert to internal code.

Calling Sequence

RJP DECIN or RJP HOCTIN
Error return
Normal return

Input

None,

Output

The appropriate return and the converted number
in INTEGER.

Subroutines Used

NUMIN,

Storage Areas Read

None.

Storage Areas Written

BINLMT, CONVERT,

34

Method

The appropriate BCD limit, 10 for HOCTIN or 12 for
DECIN, is placed in BINLMT and the appropriate conversion
routine, INTOCTBIN or INTBCDBIN, respectively, placed in
CONVERT. Then the common routine NUMIN is called which
actually tests the characters and calls the proper conver-
sion routine,

Error Conditions

1. The error return from DECIN leaves a 07 in the A-
register.

2. The error return from HOCTIN leaves a 06 in the A-
register,

35

NUMIN

Function

To test and convert a string of input characters in
either octal or decimal form.

Calling Sequence

RJP NUMIN
Error return
Normal return

Input
BINLMT, CONVERT, BUFFER+(BUFSLOT).

Output
INTEGER.

Subroutines Used

INTOCTBIN or INTBCDBIN,

Storage Areas Read

BINLMT, CONVERT, BUFFER, BUFSLOT.

Storage Areas Written

SIGN, IOINTEGER (2), NUMDIG.

36

Method

The string is first examined for a sign character which
is used to set the register SIGN to 1 if minus or to 0 if
plus. If no sign is found, the register SIGN is set to 0 and
the rest of the string examined. Spaces are ignored. Each
number is converted from Fieldata to pure BCD, tested against
the maximuwn limit given in BINLMT, and then packed into
IOINTEGER, a 2-register common storage area. The appropriate
conversion routine converts the number and leaves it properly
signed in INTEGER.

Error Conditions

If any format condition is not met or if the conversion
routine indicates an error, the routine exits to the error
return.

37

SPECIN

Function

To test the input string for a particular character.

Calling Sequence

RJP SPECIN
Error return
Normal return

N

with the Fieldata code of the character to be tested for in
the A-register.

Input
BUFFER+(BUFSLOT)

Output
INTEGER.

Subroutines Used

None,

Storage Areas Read

BUFSLOT, BUFEER,

Storage Areas Written

INTEGER.

38

Me thod

Spaces are not permitted; the character in BUFFER+
(BUFSLOT) must be precisely that given in the A-register
and the next character must be a carriage return., The
proper character is placed in the common storage register
INTEGER,

Error Conditions

1. If the input buffer size is exceeded, the error
return is made with a 01 in the A-register.

2, If the character was not properly entered, the
error return is made with a 10 in the A-register.

39

YESIN

Function

To test the input string for a yes or no answer,

Calling Sequence

RJP YESIN
Error return
Normal return

Input

BUFFER+ (BUFSLOT) .

Output

INTEGER (= 1 for yes, 0 for no).

Subroutines Used

None,

Storage Areas Read

BUFFER, BUFSLOT.

Storage Areas Written

INTEGER.

40

Method

Spaces are ignored. Only the first character is
tested for Y or N, after which anything may be typed.

Error Conditions

If neither a Y nor an N is typed as the first non-
space character, the routine exits to the error return
with an 11 in the A-register,

41

FLOATIN, FIXIN

Function

To test the input string for proper exponential format
and convert to either floating- or fixed-point internal form.

Calling Sequence

RJP FLOATIN or RJP FIXIN
Error return
Normal return

Input

None,

Output

The appropriate return.

Subroutines Used

EXPREPREN, CINFLT or CINFIX

Storage Areas Read

None,

Storage Areas Written

None,

u2

Method

FXPREPREN is a common routine for testing input format,
after which the appropriate conversion routine is called.

Error Conditions

If either of the subroutines indicates an error, the
routine exits to the error return.

43

FXPREPREN

Function

To test the input string for proper exponential format
and get the information into common storage areas.

Calling Sequence

RJP FXPREPREN
Error return
Normal return

Input
BUFFER

Output

EXPSIGN, SIGN, IOINTEGER(2), IOFRACTION(2), IOFRACTION (2),
IOEXPONENT,

Method

Each portion of the input number is examined separately,
beginning with the sign (the absence of which indicates a
plus), followed by the integer portion terminated by a decimal
point, then by the fraction terminated by an E, then by the
sign of the exponent, and finally by the magnitude of the
exponent, terminated by a carriage return.

Error Conditions

Tests are made for the digit count of the integer or
fraction portion not exceeding 10, for the exponent not
exceeding 40, for all characters to be valid digits, etc.
Any violation causes an exit to the error return.

yy

BINDECINT

Function

To convert the value in INTEGER from binary to decimal
in Fieldata output form.

Calling Sequence

RJP BINDECINT
Normal return

Input
INTEGER.

Output
IOINTEGER(2), SIGN

Subroutines Used

None,

Storage Areas Read

INTEGER

Storage Areas Written

IOINTEGER (2), SIGN

45

Method

Repeatedly divide the quantity in INTEGER, having been
forced positive, by 12 and store the remainder in the ap-
propriate digit position of IOINTEGER or IOINTEGER+1,

Error Conditions

None,

46

INTOCTBIN

Function

To convert the value in IOINTEGER from octal input form
to internal binary form,

Calling Sequence

RJP INTOCTBIN
Error return
Normal return

Input
IOINTEGER (2), SIGN.

Output
INTEGER.,

Subroutines Used

None.

Storage Arecas Read

IOINTEGER (2), SIGN,

Storage Areas Written

INTEGER.

47

Method

Each character is tested for the presence of an 8 or 9,
which results in an error condition. If not, the good char-
acters are packed into a register that is stored in INTEGER.

Error Conditions

Non-octal digits result in an exit to the error return.

48

INTBCDBIN

Function

To convert a value in IOINTEGER from integer decimal
form to internal binary.

Calling Sequence

RJP INTBCDBIN
Error return
Normal return

Input
IOINTEGER (2), SIGN,

Output
INTEGER.

Subroutines Used

None,

Storace Areas Read

TOINTEGER (2), SIGN,

Storage Areas Written

INTEGER.

49

Method

Multiply successively higher order digits by 12¢ and
add to the previous partial product.

Error Conditions

An overflow in the multiplication process indicates
that the value in IOINTEGER was too large to convert to

single-word binary and causes an exit to the error return.

50

FRABCDBIN

Function

To convert a value in IOFRACTION from fractional decimal
form to internal binary.

Calling Sequence

RJP FRABCDBIN
Normal return

Input
IOFRACTION(2) , SIGN.

Output
FRACTION.

Subroutines Used

None.

Storage Areas Read

IOFRACTION (2) , SIGN.

Storage Arcas Written

FRACTION.

51

Method

Multiply successively higher order digits by (10/12)2
and add to the previous partial product (where n is the
decimal power of 10 of the digit being multiplied).

Error Conditions

None.

52

BINDECFRA

Function

To convert a value in FRACTION from internal binary form
to fractional decimal form suitable for output.

Calling Sequence

RJP BINDECFRA
Normal return

Input
FRACTION.

Output
IOFRACTION(2) , SIGN.

Subroutines Used

None.

Storage Areas Read

FRACTION.

Storage Areas Written

IOFRACTION(2) , SIGN.

53

Method

Multiply the fraction by 10 (B1), each time converting the

high-order four bits to output form and accumulating them in
TOFRACTION.

Error Conditions

None.

54

SUPZRO

Function
To suppress leading zeros in the area defined by the

calling sequence, converting them to blanks, but leaving
one zero if the entire value is zero,

Calling Seguence

RJP SUPZRO
U-TAG AREA XX (XX = number of words)
Normal return

Input

Area given by calling sequence.

Output

Same area.

Subroutines Used

None,

Storave Areas Read

Area given by calling sequence,

Storace Areas Written

Same area.

55

Method

Test leading digits for zero, clearing each until a non-
zero digit is found or the area exhausted. If the latter,
force a single zero in the least significant digit position
of the area.

Error Conditions

None.

56

COFRND

Function

To round off the value in IOINTEGER and IOFRACTION to
BETA deeimal places.

Calling Sequence

RJP COFRND
Normal Return

Input
IOINTEGER(2) , IOFRACTION(2), BETA.

Output
IOINTEGER (2) , IOFRACTION (2)

Subroutines Used

None.

Storage Areas Read

IOINTEGER (2) , IOFRACTION (2), BETA.

Storage Areas Written

TOINTEGER (2) , IOFRACTION (2) .

57

Method

The BETA+1st digit is tested for five or greater. If
not, it is cleared and the fraction replaced as is; if so,
the next higher order digits are tested for 9's to see if
the carry will propagate upwards. This process continues
from IOFRACTION through to IOINTEGER until a digit less than
9 is found at which point 1 is added to it and the value
cleared up and prepared for output with BETA digits, zero or
greater in IOFRACTION.

Error Conditions

None,

58

COFFIX

Function
To convert the fixed-point value indicated by the call-

ing sequence to output fixed point format with BETA decimal
places printing.

Calling Sequence

RJP COFFIX
U-TAG ADDRESS,GAMMA
Normal recturn

Input

Value in address given in calling sequence.

Output
IOINTEGER (2) , IOFRACTION (2), SIGN.

Subroutines Used

BINDECINT, BINDECFRA, COFRND, SUPZRO.

Storacc Areas Read

Address given in calling sequence.

Storage Areas Written

SIGN, INTEGER, FRACTION, IOINTEGER(2), IOFRACTION (2)
(by subroutines).

59

Method

The value is made positive and its true sign temporarily
stored. It is then separated into its integer and fractional
portions by the binary point (GAMMA) given in the calling
sequence, Each is separately converted to output form and
the entire value rounded to BETA decimal places with leading
zeros suppressed.

Error Conditions

None

60

CINFIX

Function
To convert the input value in the various storage

registers to a single fixed-point binary quantity with the
binary point given by the calling seguence.

Calling Seguence

RJP CINFIX

U-TAG ADDRESS,GAMMA
Error return

Normal return

Input
IOINTEGER (2) , TIOFRACTION(2) , IOEXPONENT, EXPSIGN, SIGN.

Output

The address given in the calling sequence,

Subroutines Used

INTBCDBIN, FRABCDBIN,

Storage Areas Read

IOINTEGER (2) , IOFRACTION (2), IOEXPONENT, EXPSIGN, SIGN,
INTEGER, FRACTION, NOINTS.

Storage Areas Written

INTEGER, FRACTION (by subroutines); address given in
calling sequence, FXCODE,

61

Method

After masking off the Fieldata code bits from all num-
bers, the exponent is converted to binary. The values in
IOINTEGER and IOFRACTION are shifted right or left (depend-
ing on the sign of the exponent), the number of digit posi-
tions indicated by the exponent. Then the integer and the
fractional portions are separately converted to binary through
the use of subroutines and the results shifted together the
nunmber of places given by the binary point (GAMMA) in the call-
ing sequence. This quantity, after adjustment for sign, is
then stored in the address given in the calling sequence.

Error Conditions

If overflow occurs indicating that the integer portion
is too large to fit into the number of bit positions available,
the routine exits to the error return.

62

COTFLT

Function

To convert the value indicated by the calling sequence
from internal floating-point form to output exponential form.

Calling Sequence

RJP COTFLT
U-TAG ADDRESS,0
Error return
Normal return

Input
Floating-point value in ADDRESS (2).

Output
IOINTEGER+1, IOFRACTION(2) , IOEXPONENT, EXPSIGN, SIGN.

Subroutines Used

FLTPT, BINDECINT, BINDECFRA, COFRND, SUPZRO.

Storage Areas Read

EXPONENT, FPFRACTION.

Storage Areas Written

INTEGER, FRACTION, EXPONENT, FPFRACTION, IOINTEGER(2),
IOFRACTION (2) , IOEXPONENT, EXPSIGN, SIGN, SINTEMP.

63

Method

The value indicated by the calling sequence is stored
as a positive quantity in the common area EXPONENT and
FPFRACTION along with temporary storage of the true sign.
Separate paths are entered depending on the sign of the ex-
ponent; but as the functions are similar, only the positive
exponent path will be described.

The number is tested against the floating-point rep-
resentation of 10 and repeatedly divided by it with cor-
responding adjustment of IOEXPONENT until it is less. Then
it is tested against a table of floating-point representa-
tions of powers of ten and divided by the highest one which
is less than it, thus making the number in terms of units
only. Now the value can be shifted an amount equal to the
exponent minus the base (40000) to separate the integer and
fractional portions which are each converted separately to
output format. The resultant input-output values are rounded
to BETA decimal places and zero suppressed. The IOEXPONENT
is then converted to decimal for output.

Error Conditions

If the resultant value of IOEXPONENT is greater than U0,
the routine exits to the error return.

64

CINELT

Function
To convert the input value in the various common storage

registers to a floating point number stored in EXPONENT and
FPFRACTION.

Calling Sequence

RJP CINFLT
Error return
Normal return

Input
IOINTEGER(2) , IOFRACTION(2) , IOEXPONENT, EXPSIGN, SIGN.

Qutput
EXPONENT, FPFRACTION.

Subroutines Used

INTBCDBIN, FRABCDBIN, FLTPT.

Storage Areas Read

TOINTEGER (2) , IOFRACTION (2), IOEXPONENT, EXPSIGN, SIGN,
INTEGER, FRACTION

Storage Areas Written

INTEGER, FRACTION (by subroutines), EXPONENT, FPFRACTION.

65

Method

The input integer and fraction are separately converted
to internal binary form after being stripped of Fieldata code
bits. The resultant words are normalized by shifting to-
gether with a base exponent increased by one for each posi-
tion shifted out of the integer and into the fraction. Al-
ternatively, if the value were a pure fraction, the exponent
would be decreased by one for each bit position the fraction
is shifted left until it is normalized. This normalized re-
sult is rounded off with appropriate exponent adjustment and
stored in a floating-point area.

Now the input exponent may be applied through use of the
floating-point subroutines. This exponent is separated into
the tens and units position for conservation of table storage
size. The floating-point value developed thus far is multi-
plied by the appropriate units digit, also in floating-point
form, and that result multiplied by the appropriate multiple
of ten. The final result is adjusted for the original sign.

Error Conditions

The error return from the INTBCDBIN subroutine causes an
exit to the error return.

66

Save vegisters
Set OUTSW A to 2
St QUTSW R 4o {
et IRTCW to {

Set "’!SAS! tefiay

Clear
activity word
except for
qttenuation bt

Output §pec tabld
address = O
NoO
Test
output spec Lalig
for prunt owmly
Seb D(}[N’SN

Clear
output character]
buffer count

Tntevpret outp
spec table converty
snd tay up oulp

AFUR L

Tnsert cavviadg
return ond line
feed before
put put stying

Set
INT SW
to 2

®

Set
input completion
bit in
tuvity word

©

Set Will
output sw
to 4

PRINTSW = O

Inttiate
{ char
input bufte
1

Initiate
output
string buffer

Print outpu
Stving on TTY
1g ey 3

Print outpu
String on hy
peed. pnntey

Clear
unput character]
buffer count

®

INTERCOM

Sheet L of 2

67

©

Set
output completi
s oy
Ty p— il all
AL ‘[— output complete
Inttiate :
i char Inttiate
wnput buffer L char
wnput butters
1
THTow Restore
i 2 eqisters
Initiate
output buffer
with
¢{R and LIF
[WEST OUT |

Print output
string on T
if Key 3 se

INTERCOM
Sheet 2 of 2

68

Save

reqistevs

Encble channel O
interrupt nflstm
disable channe(2
untevrupt vegq sters!

Exabole channe

utevrupt teqisters

dicable clannel 0

wterru pt vequsterd

RQestove
veqistiers

(M\enﬁ
0o

conrPRoc
Sheet 4 of 3

69

2
nput spec tabldy Yes
address -0 SEk
NO LIMITSW

to 4
1
Initiate
output ouf{en

5 to type P
dgecepted

WESTOUT
Print outpu
stying on TTY,

nterprets npul
<pec table checks
converts and

ko inpu

Initiate
output buffer
to type
e

WESTOUT

Print output

string ow TTY
(f ey 3 se

NO
[HSPACC \
Prin
" accepted”

COMPROC
Sheet 2 of 3

70

©

Clear
activity
word

1
Save
input
character

co¥nt

Inttiate
{ char
input buffer

1

Inttiate
output bufter
to type

gttention symbe

WESTOUT
rint outpu
slwrinqonn
i\f key 3 se

Key { set

No

HSPATTN
Privt wnput a
attention message
1gh speed printer;

F

Clear
tnput buffer
count

|

Delay
titl output

complete

Yes

©

Clear
activity
word

1
Save
input
chavacter
count

Print input strnd
and*not accrpted *o

high speed prwn

Reset
input buffer
count to O

to erase

previous v

Setup output
buffer with spaces
tollowing * not

!gzgg%'d2¢#

Initiate
{ char
buffer

|

Initiate
output
bufter

Print outpu
string onTTY
1§« A

COMPROC
Sheet 3 of 3

71

Save

registers
ouT SW A
2
oUT SW
& 4 Tssue
nput cpec table\Yes CIR
Set out (;ms.o and
e o LF
to L
rint outpw A
string enTTY Sh;.‘t
Tt ¥ey 3 set
iasue ¢/R
Yes LJF and
Want C/R and LJF 5 spaces
Vo to indent

Print outpu
stringonTTY
I{ Key 3 se

Lssue

Print outpu

IVTOLT
(output Intevrupt Routine)
Sheet L of 2

72

¢

Set
output
completion
bt on

et
KILLOUT

W

to |

Tnitlate
{ char
input

_buffer

Restove
vegisters

INTOUT
Sheet 2 of 2

73

Save
registers

Set KTLLOUT SW to
Set INTID SW ol
Set OUT SW A to

nptd spec table) Yes | Tssue
eddvess = O C/R and LIF
Vo

Print outpu
Slring onTTY
1f key 9§

ves Move
nt C/IR and LF linput character
oS to out put buf{en

1

Uove th Tssue

wput charac { char
tooutput bufter followed by
T CIR and LJF
.
Print outpu
oy String onTTY

T se

Print output
tring on TTY
I{ Key 3set

INTIN
(Input Interrupt Routine)
Sheet 1 of 3

74

@

Set
lﬂi’lf cowm

bit on

Store
input char in

wnput buffer
and buffer coun
1

Bump
buffer count

Yes Evvory
N
Yes
1
Initiate
Set input
CR W0-0P SW ouffer
to 2
Sei
Char = Yes ‘
uestion ma delete it
on
No
IVTIY
Sheet 2 of 3

75

Set
attention bct
on

©

Set OUT SWAtod
Set LIMTT SWtol

ra

Type back
input char

Print outp
ttring enTTY
T vey 2 set

Set
INTIN SW
to 2

L

Restore
reqisters

INTIN
Sheet 3 of 8

76

@

save
veqisters

Input char
tqure shift
No

nput chare
iqure Shi
Vo
Tvanslate TTY
character
{to FD
with table

Place
Fd
thavacter
in_nput buffer]

Restove
vegisiers

Yes

Yes

Set
translation
table f{or
letter shift

Set
tvanslation
table for
fLguve shift

TTYIOINT

Set
QUTSW A
to)

|

Init tate
TTY
out put
buffeyr

®

(Westford Tnput Interrupt Routine)

77

Clear
pre-ouffer
area

Find address of
calling ¢
to TUTERCOM
convert to fieldat

Evvor code =0

Evvor code = 20 Set up
reqisters
for
PROGRAM ERRD
Evror code e
cet up
reqisters
for
EORMAT ERROR

Get no. of
spaces befo
iy

‘.

Stove
no. of spaces
efore repeating

'uu;ut
Set up
bcqlnnlng
addvress
of bsfﬁgr

Unpackand store
errovr messege
tn buffer
fove speces

ERROR
Sheet 4 of 2

78

Set
oUTSW B
to 2

Was thes
format errov
Nes

A on
qood characte

Set up
ending
address
of butfer
[

Tnitiate
ou{pui
buffer

Vo

Q

Move
"MAX"
to Limit
message

Hove
"MIN®
to Limit

messa

Set 'y |
COMPROC to 2
Set CR-NO-0P
IVTIN to &

Sheet 2 of 2

Set up
veglsters
for

Ts Westford actt g0 Extt

yes
Save
vegisters
Initiate
inu“;‘ ?’t"'ﬁ AL TTY input
pres "D;‘ buf fer

®

Get
aadvess of
out put
FD buffer

Bring
next
FD
charactey

Character \ Yes
upper case /

\ready \Yes

Jtore
down shift
in TTY
buffer

WESTOLT
(West ford Ou.t{mt Routine)
sheet 1 of 2

80

Translate
3]
to 'TTY

Lwith table

store
TTY character

tn TTY

buffer

Set up
buffer
limets

Inttiate

out put buffer
F:r TTY

A &

WESTOUT
Sheet 2 of 2

81

Save
registers

I

Get
Location

Set up
calling
sequence
to LUTCHK

Set
limit
switch

{0 2

Isolate
tormat
code

I
Seavch
code table

$or
equatity

ormat cod
in table

PN

|Db

/CREE KCOMNY
Convertsy 2
to iniege

Format
w F, D O,S
or Y

TLUFORMILT
Sheet | of 2

82

Clear
input char
count

TOFORMINT
Sheet 2 of 2

83

Get
location
of output
spec table

Search
for format
code n
code table

Find code

Tsolate and

Code = Yes store BETA in
loating poLn PUTPREP

Vo calling sequenc

Tsolate and
ttove BETA in
PUTPREP

ore
converted
Tin
alling

PUTFORUINT
Sheet 4 of 2

84

Get Llocation
of output word)
save possible
net output spe

PUT PRE

Prepare
output in

utput

Add 2
Dext output spec\ Yes to previous
location = Oer spec Location
Vo and vestove

Put
that address

Vext output spec
oxation s-0 oy -4

PUTFORMINT
Sheet 2 of 2

85

Save
registers

|

Tsolate and store

loc of output,

gamma, beta and
put typec

Convevt

to fleating
. no.

Nermal

. UO LI I
Stqn = 0 -n
out put buffer

ves

Stove

{ diqit integer
waedul %ct.
n b\llﬁer
Unpack and storel
f digits
of fraction
in_output buffed

Stove

space, ‘e”
and sign
04 exponent

1
Unpack and stosd

Restove of
vegisters evponent

PUTPREP
Sheet { of 2

86

Convert
to fixed
t. no.

P_t .0: unpack and st
output buffer] odaLi;ntegns

@ putput buffer

levo sueprcs
AN Mm&?r
¢ outout buffey,

Stove decimal

and unpaek and
stove A digits
0f fvaction

Inttialize
Loop
to unpack
FD words

Get
next
/BTUBECTIN word
Convert LN
to decimal

wnteqers

Store
=" i

output buffer

N
output baffer

PUTPREP
Sheet 2 of 2

87

<

Save
vegisters
Set sign
Ts number <0 =1,
i L complement
Vo number
Set
sign

Cleay wnext
10 IVTEGER
wovd

Divide number

(ov rematnt

%uot lcnt)
by 10

Add &0 to remainder]
to convevttofD
and OR into proper
char. position OI
10 INTEGER wor,

I0 TLUTEGER\ Wo
word {illed

Nes

2 1O INTEGERY WNo
ords filled

Yes

BIMDECINT

88

Inituialize
registers
for
Loops

Get
next

TO INTEGER
wo rd

Pack in
octal
portion
of digit

Stovre
(] ves magnitude
SLqu =z 0O 0{' Pﬁcked
Vo numbey
Store
Number Y\ No complement
over {low o} packed
Yes number
IUTOCTRIN

89

Save
vegisters

|

Initialize
Loops

Get
next
IOINTEGER
word

Tsolate
next highest
ovder digit

Complement
vesult

TOTBCOBIN

90

©

Inttiatize
Loops

Get
next

TOFRACTION
word

Isolate
next highest
ovder digit

u l{iT
ultiply by
(10/12)u
wherve
W ts inctiallys 4

Kound if RecesSSary
and stove back
wn multoplication

factoy

Round \{Jn«esso y
and add into previousiy
sccumulated vesult
(intially zevo)

]
Multiply
muttiplication factor
by {0/12

(2,785 X by power o

Complement

vesult

Stove
vesult
tnto

FRACTION

FRABCDBIN

91

®

Initialize
Loops

Ts FRACTION <O}—E2

| No
Store
Y0

in
SIGN

Ul ply accumulate
product inttially
FRACTION by 24, oftd
hifting nght 1 p

or {-iel\dnto.
bits onto
high ovder
4 bits
= |

Stove
into
TOFRACTION
wovd

TOFRACTIO
word fitled
Yes

2 words filla

Vo

Con\pLe Q\Q nt
fractton
store non-2¢ro
wn SIGN

Shitt
TOFRACTION
wovd { digit
posttion Lleft

Set up
for
next
wovd

®

BINDECFRA

Save vegisters
and adjust

exit locations
Tnitialize Loop

Bring
next
word

Sheft
and i50late
Lleading digit

Yes

End of wovd

Vo
Move
vest of
wovd
togethey

bacK in
orlqipal
location

SUPZRO

93

Srijt YOF RACTION
and TOFRACTION+{
9-BETA character
positions right

Tsolate
BETA + 45t
digit

Clear
ghat
aigit

Add
il to
digit

Clear
RETA + st
aigit

Entire §ract'son 20

Vo

Left justify
frac tion
and
ctovre away

Construct beta
ositions of 2evos]
i fraction and
*oR" onto .
previous fract (on

COFRID

Sheet 4 of 2

94

Store

fract won

avay

Bring
wn
'Ln‘teqe'f
portion

Clear
that
digit

Next lowest
praer digit = 9

Vo

Add
i to
digit

Left justi

'mte‘qe A nddff}’n
(0s to cleared
positions tomale P
|zeros and store awayl

COFRWD
Sheet 2 of 2

95

save
vegisters

Convert
input
exponent
to bingry

Swift nteger

Signof Yes and {raction nq
eyponent = - of char posctions
No right = exponent

@

of char posttiong
left = z?lPOMI(t

CINFIX
Sheet L of 2

96

save

S,
temporarcly

Shitt
gamma bits
of fraction
tn with integer

Anj over {Low
Vo

original sign-} Do @

Yes

Complement
word

O

Store in
address
qi.ven in
allng SeQ
CIVFIX
Sheet Z of 2

97

Save
reqisters

I

Separate exponent]
into tens
and uncts
positions

Strip fietdata
codes {ron wnput
words JOIUTEGER
and TOFRACTION

Convert
fraction portis
to binar

Vo
R
e
bt position shifind

Store
0 itn
floating

|_pt wordsS |

g
s

zcm‘
by i

T
tkg tef

{bit go

CINFLT
Sheet 4 of 2

98

Tusert 2 5ign g
and round if
necessary Aga@l
to expoaent it
round carvies to U

store wantissq

and exponent
into common
storaqe

Set up floati
pt multipticats

{or proper sizn
of exponen

Restore
veqisters

CINFLT

Multiply
tloating pt. ol
by appropriate
power of 10

Multiply
{loating pt.no.
by appropruate
power of {0

| Complement
montissa

®

Sheet 2 o} 2

99

Inttialize loop
to find
Save powey of L0 <
veqisters loating pt. ho)
FLt.pt, no. =0 ¢
Complement Lo
Flt.pt. no. >0 number

save sign

Mo

by {0~
Add wn to

UultipL
by {0“2
kad L0 to
rutput exponent

COTFLY
Sheet L of 3

100

2

Sheft mantissa left
cxporent - 40,000 ploord
to wolate integerond
{vaction porfions

[EINDECINTY
Convert intege
port l_on
to dectma

/BINDECFRA
Convert {ractis
poriton
0_de ima
[_COFRVD \
Round of{
to beta
places

[_SUPZRO)
Suppress

Leading
2€Y0

Wumber rounded
to 10

No

Fovce in {
and tncrease
evponent
by {

COTFLT

Restore
original
sign

Exponent >40
No

Convevt exponent tof
decimal , add (0s to
rake fieldala and

stose tnpudput Rg}on

Restore
vegisters

Sheet 2 of 3

101

Tnitialize Loop

This path _ X
for negative to find negahvﬁ
exponent power of 10 <
floatina pt.no)

0

Exponent < 1o
(V)]

=10
Yes

Exponent

Yes Yo
©
Multipt No
A:?i ig to
cutput expenent <72

Fraction <10

©

Multiply

by LoO%

Add n to
output exponest

COTFLT
Sheet 3 of 3

102

Save registers

get location

of argqument,
gamma.

Sign of word -

Yes

Save sign,
complement
wovd

Sh({t gamma

places off

into fraction
porﬁion

Save
integeyr
povtion

/BIUDECTUTY
Convert
to de tmal

/BIVDECFRA\
Convert

{ vaction porteo

.l(l

Round of§
to beta
imgl plo

Suppress
leadlng
2evo

COFFIX

103

Restore
original
sign

|

Restove
vegisters

Initialize
register
for Loop

I

Get
numbeyr
to e

convevted

Shift
to make room
for
fieldata bits|

Shift digit in
and add 60
to convert
to ¢ieldata

Ts wovd

tltled up
Stove
in next

I0 TWTEGER
wovd

BIVOCTFLD

104

S3IA
0
= $S3¥00Y 3718vi D34S LNdLIAD SI

118

NOT137Td4W0D 1NdNI NO NuNi S3A
ON

0=$S3¥00Y 379v) 23dS LNINI SI
S

3SS3IVO0Y 378Y1 I34S 3IW0LS - ON

O= S379v1 J34S H108 ¥0d4 1S31
118 NOIIN3LlY IN8 1TV ¥v3I1D
NO11VvJ01 11Xx3 1Snrov

S$SSIYOO0Y OYOM WILIWVYVI 139

HO11mMS 3SVD 3Z1TV11INI

d0-ON 01 INOCINI NT MS 13§
ANDHd
Y04 drY INYW-dIW Tv3IY ¥O0dJ 13S

03SN SYILSI93Y 3IAVS

WVY90d¥d ONIT1IVI WOYd 03u3IN3

SIION

R e R N R R Y

15000
ot100

00000
¥1$%0

01020
€49000
00020

9LS%0
%1100
0o019
02000
Daoz1
%LS%0
12000
20000
20000
€%100
02019
DEL00
SE000
Z%100
od0z1

ELIS0
9€100
SET00
%€100
EE100
Ze100
1£100
DE100
LIS %0
9954%0
DSE00
D3200
93020

00000

T1e2e
#2000

01081
J0019

12511
0¢e0%s

o001t
00019
L1511

0€0s1
02041
00001
LESTT
00001
0€0YYy
20001
0109¢
Lz
02061
oooTt1
010s1
ooortt
02041
00001

00021
0o1s91
01991
01€91
ot1z91
otlr91
01991
D9t
0€0»1
0€0s1
00019
J0019
20019

00019

09¢02
¢0000

ur 4

<4000
%9000

€4000
2%000

1+000
04000
1€000

9€000
$€000
€000
€€000
2€000
1€000
0€000
12000
92000
$2000
#2000
€2000
22000
12000
02000

L1000
91000
$1000
%1000
€1000
21000
11000
01000
L0000
90000
$0000
*0000
€0000

20000

10000
00000

J01

$9/1/L30SSV -SWvOV

(90W0DINT) o v
€0W0JINI

10ONVe(L9)Ney
(ALIATLDV)Me13S

dWOIN] ey
T0W0JIN]
0Y32vell8) ey

(S79123dS)Mey
(2+€0N0JINIINeD
00019)
10ONVe(28)Mey
00021+d
(ALTATILIV) Me g
TeD

(WOJYIEIN) TeT+A
(WOJY¥IIN) e L9
(ASINOINT INey
00019V
(1353SvI) ey
Stev
{OMSINOINT INeD
000210

1INIdON
($+¥01599dD) 158
(9+3¥01598d2) %8
(€43¥01599dI)1e¢d
(2+3¥01598d2)7+28
(T1+3¥045S994dD) e 19
(¥01599d2)1+99
(u015S9dJ) e 29
(Y01SDdIIMed
{Y01SVdI)Mey

00J30udw0?D
2+4J20%dn0)
ne S
114 S
Z9 S
[44 S
0d
0d
(4]
2)
1d1d
DugAXNel
J0u¥dwW0IeWOIUIIN

$9/1/1J0SSY-SHVYOY wy

INIWILVILS VI

WOJHIIN
*ON INdIN0 1¥NdS

¥ls
dar

IN3
ERY]

IN3
dar
IN3

¥ls
yis
IN3
IN3
IN3
1dy
IN3I
1dvu
IN3
yls
IN3
yis
IN3
uls
IN3

ooozt
¥is
uis
yis
uls
yis
yis
uls
¥lS
yis
dar
AdIN3
dr

AY<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>